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ABSTRACT 

A slight improvement in the existing porous media 

flow equations is of great economic value 

especially to practitioners in oil exploration and 

production.  We developed two phase immiscible 

porous media flow equations, taking into account 

the relevant petrophysical parameters. The Implicit 

Pressure Explicit Saturation (IMPES) solution 

approach was employed as a numerical technique 

to analysed two phase flow equations with 

application to quarter five spot water flooding 

scenario, which we  simulate with MATLAB.Our 

model results conforms with what is obtainable 

with practical scenarios. 

Keywords: Two-phase flow, saturation, capillary 

pressure, Porous media 

 

I. INTRODUCTION 
Flow and transport phenomena in porous 

media is prevalent in the fields of science and 

engineering with applications in industrial, 

environmental and biological systems such as (i) 

the movement of contaminants in the subsurface 

and their remediation  Abriola (1988)  (ii) geologic 

nuclear waste disposal  Doughty and Press (1988)  

(iii) medical application such as brain and lever 

cancer treatment  Ranadhir and Daniel (2013) and 

most notably  (iv) oil recovery from petroleum 

reservoirs Mohamed and Pramod (2015).  These 

varied applications cover a vast range of length 

scales; from the kilometer scale in oil and gas 

recovery to the micron scale for micro-fluidic 

devices also, temporal scale range from ten 

thousand years in risk-analysis for long-term 

isolation of radioactive waste (U.S Environmental 

Protection Agency 1982) through year-by-year, 

seasonal, monthly, weekly, daily, and hourly scales 

for field systems to minutes and even seconds in 

certain laboratory experiments Rosswall et.al 

(1988).  Two-phase and multiphase flow model in 

porous media have been developed several decades 

ago by extending the homogeneous single phase 

flow through isotropic porous medium postulated 

by Henry Darcy’s in 1856.  Several attempts are 

being made to analyse more and more complex 

systems by the extension of  Darcy’s law such as 

modelling of multiphase flows in petroleum 

reservoirs Arezou et al. (2019).  The heterogeneity 

of the subsurface of a petroleum reservoir posses a 

great challenge in the understanding and analyses 

subsurface flows (Knut-Andreas, 2015; Pan and 

Miller 2003; Nagi, 2009, (Komal et.al, 2023; 

Vincent et.al 2022).  In order to understand the 

dynamics of porous media transport , we must have 

sufficient knowledge of the constitutive 

relationships between the macroscopic properties 

of the system such as relative permeabilities, 

capillary pressures and fluid saturations which are 

essential in the modeling of the flow transport 

(Mohammed and Pramod, 2015).  The 

determination of these constitutive relationships are 

however not without challenge as they are 

dependent on the fluid properties, the pore space as 

well as the saturation history.  The inherent 

complexity of pore-scale displacement through the 

irregular geometry of natural porous media makes 

the prediction of multiphase flow mechanism in 

geological processes a very difficult task.  

Therefore, any scientific approach to this problem 

would not only require a detailed understanding of 

the multiphase displacement mechanisms at the 

micro scale level but must also understand the 

structure of the porous medium (Pereira et al. 

1996).   The complexity in the understanding of the 

pore scale displacement mechanism in the 

petroleum  reservoir, has resulted to a decline in the 

production of conventional petroleum products, 

thereby mounting pressure on the discoveries of 

new oil wells as well as oil exploration in 

vulnerable areas such as the arctic regions.   In the 

petroleum industry, the economic value of a 

reservoir is determined by the amount of oil which 

can be produced from the reservoir, which is 

affected by either field-scale fluid flow behavior 

within the porous media as well as pore-scale 

behaviour of the flow. The pore-scale behaviour of 

the flow dictates the macroscopic (core-scale) 

properties of porous media, such as capillary 
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pressure as well as the relative permeability. The 

complicated nature of subsurface flows and 

transport processes, multiphase flow and heat 

transfer studies is still poorly understood and 

analytically intractable (Starikovicius, 2003).  

The analysis and understanding of 

multiphase flow is essential if processes involving 

multiphase flows are to be optimally and safely 

designed and controlled. Even small improvements 

in oil recovery rates can lead to huge economic 

benefits for the owners of petroleum asset and for 

this reason much research and engineering 

activities are designed to improve the 

understanding of mobilization and displacement 

mechanisms and to design improved methods for 

primary and enhanced oil recovery.  Mathematical 

analyses and numerical reservoir simulation play 

key roles in this endeavor.  This informs the 

motivation behind the present study. 

 

II. MATHEMATICAL 

FORMULATION:TWO -PHASE 

IMMISCIBLE FLOW EQUATION 

In any petroleum reservoir, there exists at 

least two different fluid phases.  The single phase 

scenario seldom occurs.  Here, we developeda 

model for the displacement of oil by water.  The 

challenge is that this happens in a simultaneous 

flow and not with a sharp edge.  To circumvent this 

difficulty, we assumed that there is no mass 

transfer between the two fluids.  We considered 

two-phase flow where the fluids are immiscible and 

one fluid phase is considered a wetting phase (the 

phase which wets the porous medium more) while 

the other is considered non-wetting. In a water – oil 

system, water is considered the wetting phase while 

oil is regarded as the non-wetting phase but in an 

oil – gas system, oil is considered the wetting phase 

while gas is the non-wetting phase.  We refer to the 

wetting phase by the subscript w  and to the non-

wetting phase by the subscript n .  In our recent 

article, Zuonaki and Adokiye (2023) we provided a 

detailed development of single phase, two phase 

and three phase flow equations.  The mathematical 

model describing the flow of two phase immiscible 

fluids in porous media was presented as 

 

( )
( )n rn n n

n n n
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where  is the rock porosity, 
n  and 

w  are the densities of the nonwetting and wetting 

phase, 
nP  and 

wP  are the respective phase 

pressures,
n , 

w ,  represent phase viscosities 

and G represents gravitational term.  Also, and 

 are the external mass flow rates for nonwetting 

and wetting phase respectively while   
ns and

ws

are the saturations of the nonwetting and wetting 

phase respectively subject to the constraint 

equation 

1w ns s      

       (3) 

 Also, due to the curvature and surface 

tensionat the interface between the wetting and 

nonwetting phase, thepressure in the wetting fluid 

is less than that in the non-wetting fluid Held and 

Celia (2001). The pressure difference is given by 

the capillary pressure which is a function of the 

saturation and the wetting phase Mohammad and 

Pramod (2015) and is defined by 

w(s )cnw n wp p p     

     (4) 

 

III. IMPES FORMULATION OF TWO 

PHASE INCOMPRESSIBLE 

FLOW 
For practical applications, equations (1) and (2) is 

formulated as 
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refer to Zuonaki and Adokiye (2023) for details. 

Now expanding the first two terms on the left hand side (LHS) of equation(5) result to: 

n n w w n w
n w n n w w

n w

u u p p
u u Q s c s c

t t t

  
 

 
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  
  (6) 

Combining the phase velocities and equating all terms to Q  results to  

  n w n n w w
n w n n w w
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p p u u
u u s c s c Q

t t t
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  (7)  

From Darcy’s law applied to the different fluid phases, we have 
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     (8) 

Using equation (8) in equation (7) 

We have 
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 (9) 

 

In this example, we assume that the rock and the two fluid phases are incompressible (that 

is 0r n wc c c   )  and as a result, equation (9) reduces to  

   n n n w w wK P G K P G Q              (10) 

 

In equation (10), there are two unknown 

phase pressures, nP and wP .  To eliminate one of 

them, we introduced the capillary pressure defined 

as cnw n wP P P  , which is assumed to be a 

function of water saturation ws .  Unfortunately, 

this leads to a rather strong coupling between the 

pressure equation and the saturation equation.  

Therefore in other to proceed further, we derive the 

saturation equation. 

 

3.1 The Saturation Equation 

 Toderive a complete model, we must 

derive the equations for the phase saturations ws

and  ns  using the continuity equations of each 

phase.  Thus the mass accumulation in a 

differential volume per unit time is given as 

( )s

t

 


 

Now, assumption that there is no mass transfer 

between the interphase of the fluid, mass is 

conserved within each phase. Thus we obtain: 
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for the non-wetting phase and wetting phase 

respectively.  Again, applying Darcy’s law to 

equations (11) and (12) results to  
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Equations (13) and (14) represent the mathematical 

model describing the flow of two phase immiscible 

fluids in porous media. 

From equation (11) and equation (12) and noting 

that the flow is incompressible, the saturation 

equation becomes 

,
s q

u n w
t

 




 



  


 

     

 (15) 

 

 However, by equation (3) we need only 

one saturation equation and it is common practice 

to choose ws  as the second primary unknown  

Grader and O’Meara (1988), Arezou et al (2019).  

Thus the saturation to be considered is 

w w
w

w

s q
u

t





 


   (16) 

To connect the continuity equation for water to the 

pressure equation (10), we need to use what is 

called the total velocity formulation.  To the end, 

we defind fractional flow of water 
wf given as: 

w
w

t

u
f

u
 or ( )w w w tu f s u  

     (17)  

Substituting equation (17) into equation (16) yields 

( )w w
w w t

w

s q
f s u

t





  


  

    (18) 

 

3.2Model Example 

The aim of this illustration is to apply 

equations (10) and (18) to stimulate water injection 

through an injection well of an oil filled reservoir 

thereby displacing the oil towards the production 

well.   We apply the quarter five-spot problem 

which is a standard test case for numerical methods 

in reservoir simulations. 

 

 

      Production well 

                        Injection well 

      Quarter five-spot 

 

 

 

 

Figure 1: Quarter five-spot formulation 

 

We assumed the permeability to be 

homogeneous and isotropic with K ≡ 1 for all 
2x  . We place an injection well at the origin 

and production wells at the points (±1, ±1) and 

specify no-flow conditions at the boundaries. The 

boundary conditions ensure that the flow is 

identical and as if werepeated the five-spot well 

pattern to infinity in every direction. The flow inthe 

five-spot is symmetric about both the coordinate 

axes. Thus we reduce the computational domain to 

a quarter, which corresponds to the unit box 
2[0,1]  .  We disregard gravity and capillary 

forces.  Under these assumptions, equations (10) 

and (18) reduce to the following: 
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3.3Numerical Scheme 

Let the total time interval [0,T]  be divided in N  

time steps as 
0 10 . . . Nt t t T     .  Define 

the time step length 
1i i it t t    .  The 

numerical scheme for equations (19) and (20) are 

given as follows: 
1 1( )i i i

wK s P Q       

     

 (21) 
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Finally, we introduce the following saturation 

dependent quantities defined as: 

     * 1 *
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s s s s
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 

 
  

 

     (23) 

Here ors  is the irreducible oil saturation, that is, 

the lowest oil saturation that can 

be achieved by displacing oil by water, and wcs is 

the connate water saturation, 

that is, the saturation of water trapped in the pores 

of the rock during formation 

of the rock.  We develop a MATLAB code to 

simulate equations (21) and (22).    

 

IV. SIMULATION OF HYPOTHETICAL 

PROBLEM WITH MATLAB 
We considered a reservoir with dimension 

(64 64 1)  ft; initially filled with oil. To 

produce the oil in the upper-right corner, we inject 

water in the lower left. For simplicity, we assumed 

unit porosity, unit viscosities for both phases, and 

set 0or wcs s  . In this non-dimensional 

model, it takes unit time to inject one pore-volume 

of water, i.e., the unit time 

corresponds to the number of injected pore 

volumes of water.  The simulated results of the 

pressure distribution and the saturation evolutions 

during the displacement process are shown in 

figure 2. 
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Figure 2: Pressure and saturation profiles for the simulation of our hypothetical problem 

  

The algorithm is quite simple.  First we set 

up the grid, the fluid properties and generate the 

initial saturation distribution.  Thereafter, the 

solution is advanced with time by repeating the 

following two steps: (i) solve the pressure equation 

and compute the edge velocities and (ii) using the 

fixed edge velocities, solve the fluid transport 

equation at a time step t . 

In figure 2, we have plotted the initial 

pressure and saturation profiles at five equally-

spaced time levels (that is, 15 seconds per interval) 

as computed on a uniform 64 64 1    grid.  The 

pressure distribution figure clearly shows that the 

pressure reduces as it advances from the injection 

well at the lower left hand side towards the upper 

right hand side.  This is what is expected in 

practical applications. The saturation profile 

consists of a leading shock-wave, in which water 

immediately displaces a fraction of the oil in the 

reservoir. Behind the front, the water saturation is 

increasing monotonically, meaning that more oil is 

gradually displaced as more water is injected. Close 

to the injector, the level curves are almost circular 

(graph of saturation at t = 15 seconds), 

corresponding to the circular symmetry in pressure 

at the injector. As more water is injected, the 

leading water front develops a finger extending 

toward and finally breaking through to the 

production well at saturation t = 75 seconds. 

 

V. CONCLUSION 
In this research, we analysed two phase 

flow equations in a porous medium.  The mass 

balance equation for each fluid phase, darcy’s law 

was modified to accommodate the different fluid 

phases.  Our flow equations were transform into 

pressure and saturation formulations and by 

rigorous mathematical applications, we are able to 

develop reservoir flow equations for two phase 

immiscible flows.  Also, we discretized  and 

simulate two phase flow equations and investigate 

the pressure distribution and saturation evolutions.  

Our results are in line with what is obtainable in 

practical scenarios.  
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